Градиентный бустинг: почему слишком много деревьев ухудшает модель
🔸 Переобучение (overfitting) — каждое новое дерево минимизирует ошибку, но если деревьев слишком много, модель начинает подстраиваться под шум данных, теряя обобщающую способность.
🔸 Снижение прироста качества — на первых итерациях каждое дерево значительно улучшает предсказания. Однако после определенного количества итераций добавление новых деревьев практически не влияет на качество.
🔸 Рост вычислительной сложности — больше деревьев → выше время инференса и потребление памяти.
Градиентный бустинг: почему слишком много деревьев ухудшает модель
🔸 Переобучение (overfitting) — каждое новое дерево минимизирует ошибку, но если деревьев слишком много, модель начинает подстраиваться под шум данных, теряя обобщающую способность.
🔸 Снижение прироста качества — на первых итерациях каждое дерево значительно улучшает предсказания. Однако после определенного количества итераций добавление новых деревьев практически не влияет на качество.
🔸 Рост вычислительной сложности — больше деревьев → выше время инференса и потребление памяти.
BY Библиотека собеса по Data Science | вопросы с собеседований
Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.
The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.
Библиотека собеса по Data Science | вопросы с собеседований from br